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1. Introduction

A Mie backscattering model for spherical particles with off-center inclusion has been developed and
tested. The program is capable of dealing with size parameter values up to ~1000, thus allowing one
to simulate the optical behavior of a large variety of atmospheric aerosols, as well as cloud and precip-
itation particles. On the basis of this model, we simulated the optical properties of polydisperse com-
posite atmospheric particles as observed by ground-based and airborne lidar systems. We have
characterized optical properties in terms of host and inclusion radii, considering water particles with
different composition inclusions. The performed modeling provides some insight into the so-called lidar
bright- and dark-band phenomenon. © 2004 Optical Society of America
OCIS codes: 010.1310, 010.3640, 280.1310, 290.4020.

Determination of the microphysical properties of at-
mospheric aerosols from optical remote-sensed data
is often done with the use of complex scattering mod-
els. The Mie theory provides rigorous solutions for
light scattering by isotropic spheres embedded in a
homogeneous medium.! Extensions of Mie theory
include solutions for core—shell spheres and gradient-
index spheres. Although these theories are re-
stricted to the case of perfect spheres, the results
have provided insight into the scattering and absorp-
tion properties for a wide variety of atmospheric par-
ticles, including nonspherical particles. The
mathematics of Mie theory is straightforward but
tedious, requiring the computation of a potentially
large number of series expansions, which makes the
computations for big particles extremely time con-
suming. Alternatively, the application of Monte
Carlo ray-tracing models based on geometrical-optics
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methods allows one to consider particles with irreg-
ular shape and with a variety of inclusions. How-
ever, this approach may fail for large sizes because of
its inability to treat circumferentially backscattered
surface waves? and its inability to properly reproduce
resonance phenomena. Additionally, the concepts of
geometrical optics do not adequately describe the in-
teractions of particles with light when the particle
size is comparable with the wavelength of the light.
The transformation of aerosols into cloud particles
and hydrometeors involves a number of different
physical processes, which permit particles to grow
from the sizes of cloud condensation nuclei (typically
0.1 pm) to sizes in excess of 1000 pm. UV- and
visible-wavelength-based study of the microphysical
processes involved in the formation of clouds and
precipitations requires scattering codes that allow
one to deal with size parameter values in excess of
50003 and are capable of considering the combined
particles consisting of host and inclusion.

One of the topics actively studied at present with
the use of radars and lidars is the change in scatter-
ing properties of melting hydrometeors. Such
changes take place during the snowflake-to-raindrop
transition in the proximity of the freezing level, lead-
ing to a minimum in particle backscatter at optical
wavelengths* (Sassen and Chen). Although not
quite exact, melting hydrometeors are frequently
modeled as a two-layered particle, consisting of a
water shell about an inner core of snow or ice.>® An



approximation for such a two-layered particle may be
represented by the eccentric spheres modell®: The
core can float to the top of the water drop because of
entrapped air bubbles. The first attempt to simu-
late the melting of ice particles with the use of Mie
code for eccentric spheres and apply it to the dark-
and bright-band phenomenon was made by Di Giro-
lamo et al.? The authors used the scattering code
developed by Mackowski,* which could perform cal-
culations for monodisperse particles with size param-
eters as large as x ~ 100. The obtained results
demonstrate the importance of eccentric model im-
plementation, but the huge computation time did not
allow consideration of the polydisperse aerosol of suf-
ficient size to make final conclusions about the
changes of scattering properties that may occur in
real atmosphere.

In the present paper we first describe the develop-
ment of an eccentric model capable of handling size
parameter values as large as 1000. On the basis of
rigorous Mie theory, the model allows simulation of
the backscattering properties of two-phase aerosol
particles in the form of eccentric spheres. We have
applied the model here to study the changes in scat-
tering properties of melting ice spheres, getting some
insight into the so-called lidar bright- and dark-band
phenomenon. This subject will be discussed in Sec-
tion 4.

The structure of the paper is as follows: Section 2
describes the mathematics implemented in the
model, Section 3 describes the simulations per-
formed, and Section 4 is dedicated to the discussion of
the results.

2. General Expressions

Light scattering by spheres with nonconcentric
spherical inclusions has been considered in
publications.10-15  All these algorithms are based on
a recurrence approach to calculate the scalar and
vector coefficients for translation of vector spherical
harmonics from one coordinate system, adjusted to
the center of the inclusion, to another, adjusted to the
host particle center. Though the expressions de-
rived in Refs. 11 and 15 allow one to make the cal-
culation at any scattering angle for an arbitrary
position of the inclusion inside the host sphere, the
computation time increases fast with increase in the
particle radius. Existing computer codes can be
used only for spheres with size parameters x ~ 100
(size parameter for a host sphere with radius a; isx =
2ma,/\), whereas realistic modeling of clouds by lidar
requires consideration of particles with x ~ 1000.

To simplify the formulas and thus decrease the
computation time, we make the following caveats in
the algorithm presented here.

¢ We consider only light backscattering—the rel-
evant measure in lidar measurements.

e We limit the movement of the inclusion to be
along the axis of the direction of incident light prop-
agation. Such simplification should be reasonable;
for example, in the case of an ice nuclear floating in a
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Fig. 1. Geometry of scattering.

water droplet, we assume only vertical lidar mea-
surements.

The geometry of scattering, together with the descrip-
tion of the main symbols, is presented in Fig. 1. Be-
cause we are considering backscattered light only,
the expressions presented in Refs. 11 and 15 will be
simplified essentially. First, the incident wave may
be expanded as'®

n

Einc,l = E E [aanizlrlz + bnmNEtlrzz]’ (1)
n=1 n

m=—

where Mﬁ;’}n(r) and N,(,LJ;),,L(I‘) are vector spherical har-
monics described in detail in Ref. 15 and the subscript
1 corresponds to the upward direction of incident
light. The incident wave propagates along the OZ
axis; therefore it does not contain terms with index
m # *1. As a result, the scattered field

Esca,l = 2 E [Canf,L + dnmNngn)J (2)
n=0 m=-n

does not contain these terms. Second, the values of
multipole coefficients c,,,,, d,,,, for indices m = —1
may be expressed through the corresponding coeffi-
cients at m = 1 as pointed out below. Therefore it is
sufficient to solve the system of equations® only once,
for m = 1. In the subsequent text all the formulas
are derived from the corresponding equations given
in Ref. 11, except that the spherical Bessel functions
are replaced by Riccati—Bessel functions and Leg-
endre functions P)'(cos ) are not normalized and
contain multiplier (—1)" according to Ref. 16.

The first step in the calculations is finding all sca-
lar translation coefficients C{, for indices from n = 0
ton = n,, ., by use of the relation

kqry 8:2 = (2n + D, (ky7y), ri=ry, (3)
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for downward translation (angle 6,, = 180°). Here
k, is the wave number in the host particle, r;; is the
distance between the host and the inclusion centers,
and v, (k,7;;) denotes Riccati—Bessel functions of the
first kind.

If the inclusion is placed below the center of the
host particle, the translation is performed upward
from the system / toj and 6,; = 0°. In this case we
should use the relation

kiryCon = (=1)"@2n + D, (kyry), =1y (4)
At the next step the scalar coefficients for index v =
1 can be determined from formulas

k1rlegZi = n¢n—1(k1rlj) —(n+ 1)¢n+1(k17"1j), (5)
klrljc&rlz = (_1)n_1[n¢n—1(k1"1j) —(n+ 1)¢n+1(k1’”1j)],
(6)

respectively, for downward and upward translations.
From the first additional formula for scalar coeffi-
cients!! taken for £ = n = 0, we have

k1Z1jC$ZZ—1
2n — 1

k1ZUC$ZZ+1+
2n + 3

Critn = + Coe
After further substituting m = 0, v = 1, 6,; = 180°,
and Z;; = rj; cos 0,; = —r,; into the above relation, it

becomes

0,1 0,1
11 _ (01 On+1 On-1
in=Con — kl"lj(2n 43 + on — 1) . (7

For the upward translation we have, correspond-
ingly,

Ccon Con-
1,1 0,1 On+1 On—1
w=Con+ kyry + . 8
b o 1rl](2n +3 2n-1 ®

Using formulas for Cg:,ll, Cg:,llﬂ, and Cg:,ll_l and re-

currence relations for spherical Bessel functions, we
obtain, for the scalar coefficients with index m = 1
and angle 6,; = 180°,

(2n + D, (kyry)

Ciy = 9
" (kry)®
For 0, = 0°, this formula becomes
2n + D, (kyry;
C}:,ll — (_1)n71 ( n )lbn( 1rlj) (10)

(kry)?

From the third recurrence formula for scalar coeffi-
cients!! taken at index v = 2, we find for the down-
ward translation (6;; = 180°)

n—1 ., n+2 .
1- 1ol a1
on — 101 gy g i) (4D

1,2 _
1n — 3
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For the upward translation (6, = 0°) we can use a
more simple relationship:

C12(0°) = (=1)"C1(180°). (12)
The coefficients for indices v = 2, 3,..., v, and
0,; = 180° can be found from the formula
2v—1 v n+2
Cl,v — 1v—=2 _ Cl,v—l
Ty -1 (2v -1 " 2n+3 M
y 2oL o (13)
zn o 1 1n—1]>

which is derived from the same equation!! that was
used above. For the upward translation it is conve-
nient to use the simple relationship

C1n(0°) = (=1)""C1;(180°). (14)

From additional Mackowski’s formulas!! for vector
translation coefficients A},", and B}’ taken at m =

p=Lt=m=0,n=12...,0p0v=12 ...,
Vmax> and 6;; = 180°, we have

(n+2)
Al,v — Cl,v _ k ) 1,v+
1n 1n 17'11[(” +1)(2n + 3) 1n+1
(n—-1 _,
+—Cy ], 15
n(2n —1) 71 (15)
1,v
BV = —ikir, — " (16)
L YUnn+1)
and, correspondingly, for 6,; = 0°:
(n+2)
Al,v — 1,v + ) l,vJr
1n 1n kl"zj[(n +1)(2n + 3) 1n+1
(n—-1) )
— = Cyy_ 17
n2n—1) 7| (17
Bl = tikyry S0 (18)
Ln = THATY nin+1)°

The relations between coefficients at two opposite
shifts of the coordinate system [ relative to the system
J are as follows:

A77(0°) = (=1)""A1;(180°), (19)

B15,(0°) = —(=1)""B};,(180°). (20)



For the calculation of multipole coefficients c,,,,,, d,,,,,
of the scattered field, we first determine the un-
knowns t,,,, 4,,, from the system of equations®

(Vmax

B _ .
2 tvm 1,m,v + uval,m,v = A1l
Vmax
E tvm 2,m,v + uva2mv a2mnll

E tvaﬁ + uvaﬁnaxmv = annaxmnli
- @D
E tvm lmv + uvaim,v = blmnli
ix tvm 2,m,v + uvava menli
kix tvaﬁnM,m,v + uvaA:,,ax,m,v = bnmxmnli
=1
where
T‘ﬁ,m,v = Az:;z{gr’t(kal)[gn(klal) + @é.(k1ay)]
—nq,(kay)[{(kiay) + @&, (R1aq)]}, (22)
Uy = Brondén(ka)[ L (kiay) + @5, (kray)]
—ni&,(ka))[{(kiar) + @&, (kia)]}, (23)
TB Bmv{n1§ (ka)[L,(k1ar) + @€, (k1aq)]
— & (ka)[L(k1ay) + @16, (R1ay)]}, (24)
nmv Aﬁz{nlé (ka)[L,(k1ay) + @€, (k1ay)]
- gn(kal)[Cn(klal) + Qvgn(klal)]}a (25)
Q = n1l(k1a) P, (koas) — nsl(Rias)l(keay)
! no€,(k1as) b (koas) — ni&y(k1as) P, (keay) ’
(26)
Q= noli(kra) P, (koas) — nqil(kras),(keay)
' n1€,(k1a) b (koas) — nséy(ki1as)l,(keay) .
@2n

Here a; and a, are radii of the host and inclusion
particles, respectively; n, and n, are their refractive
indices; £ and %, denote wave numbers of the outer
medium and inclusion; &, and {, are Riccati—Bessel
functions of the third and fourth kinds; and primes
denote derivatives. After the unknowns oms U ATE

vm

found, the multipole coefficients c,,,,, d,,,,, of the scat-
tered field E. , can be found with formulas

1
cnm =5,
n,éx(kay)
S Y

2 ekay ) {[c,;(klal) ¥ Qkrar)]

€.(kay) ! [C(Riar) + Q. (k1ay)]
uvaf,m,v

TEka) [[c;<k1a1> + Qitikiay)]

Ekay) | [G(Riay) + Q. (kray)]
L,';n(kal)
- s 28
Gom ¢ (kay) 28
qd -1
i gﬁ(kal)
s tomTn s

X2 Ehay) _[G(kia) + QE (ki)

gn(k(h) [Cn(kﬂll) + Q€. (k1ay)]

A
Uym Un,m,v

o Enlka)  [{(kiay) + QiE(R1a))]
Veukay)  [Lu(kia) + Qi (kyay)]
l"'n(kal)
—bun ; (29)
gn(kal)
taken at m = 1.
For calculations of these coefficients at m = —1, we
use simple relations:
Cn,—l = n(n + 1)cn,17 (30)
d,-1=—-n(n+1)d,;. (31)

Finally, the backscattering cross section do/d() and
extinction cross section o115 are given by

2

do

dQ 4 A2 E L n’(n + 1)(cn1 n,l)

(32)

- o
Oeoxt — k2 Re{; n(n + 1)i"+1[c’};1 + (_1)n+1cn1

+(=1)""'d,, +d¥ 1]] (33)

The last two formulas also give us the opportunity to
compare results obtained by upward-looking lidar
(incident wave E;,,. ;, see Fig. 1) with data received by
downward-looking lidar radiating incident wave
E;,» in the opposite direction. The backscattering
coefficients for these two situations will be different,
whereas the extinction coefficients will be the same,
This fact is proved in Appendix A.

1e., 0-ext,Z = 0-ext,l'
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3. Simulation Results

We have computer coded the above equations, and we
discuss the simulation results below. Our main fo-
cus is to attempt to understand the scattering prop-
erties of combined hydrometeors, consisting of a
spherical host and a spherical inclusion, and how
these may be revealed in lidar experiments. For de-
scribing the optical signal detected by lidar, the op-
tical parameters that are commonly considered are
backscattering f and extinction a coefficients and
their ratio, R = o/, known as a lidar ratio. These
quantities are the main scattering parameters that
we will evaluate by the simulation. The main ques-
tions that we address in our study are how the par-
ticle scattering properties depend on the inclusion
size, on its location inside the host, and on their re-
fractive indices. We will further simplify the ques-
tion by assuming that the refractive index of the host
in our calculations is set to m; = 1.348 — {0, which
corresponds to pure water at 355 nm, whereas the
refractive index of the inclusion may be higher or
lower than that of the host. We will use m; = 1.45 —
i0 and m; = 1.25 — i0 to represent the situations
when m; > m,, (dust particles) and m; < m,, (biolog-
ical particles), respectively. The case of special in-
terest here is a water droplet with an ice inclusion;
the corresponding value of the refraction index is
m; = 1.324 — {0.17

Our computer program allows for computations for
spheres with size parameters of as large as ~1000.
In the simulation, computation time increases with
size parameter approximately as x*, and computation
time (for a typical scenario considered below) at x =
1000 took more than a week on a 2.3-GHz personal
computer. Understandably, we usually limited our
computations to x < 500. Simulation results for
small size parameters were compared with those
from Mackowski,!! and, for an inclusion located in
the center of the host, results were compared with a
concentric spheres code.? In both cases the results
proved to be in agreement with existing programs.

A. Dependence of Scattering Properties on Inclusion Size

To evaluate the dependence of particle scattering pa-
rameters on an inclusion relative radius (p defined
here is the ratio of the radius of the inclusion to the
radius of the host particle a,/a;), we first consider the
condition in which the inclusion is attached to the top
or bottom of the host, i.e., p + 8 ~ 1. Here d =
(r;/a;)cos 0, = *r,/a, is an inclusion relative shift
(r;; is the distance between the host and the inclusion
centers), 8 = 1 corresponds to an infinitely small
inclusion attached to the top of the host sphere, and
d = —1 when the inclusion is at the bottom. So
changing p from 0 to 1 corresponds to the following:
The small inclusion starts near the top of the host
particle and increases in size, until it fills the entire
host sphere. To some extent, such geometry corre-
sponds, for example, to the case of an ice sphere melt-
ing while the unmelted floating core stays near the
top of the water particle.
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Fig. 2. Extinction and backscattering coefficients as a function of
the inclusion relative radius. The inclusion with m; = 1.45 is
fixed near the top of the host sphere with m = 1.348 and size
parameter x = 4. Dashed lines show the extinction and backscat-
tering for the host sphere without an inclusion.

This configuration is illustrated by Fig. 2, in which
the calculations are performed for x = 4, m; = 1.45,
and p + 8 = 0.995. Dashed lines show « and B
values for homogenous spheres with refractive indi-
ces 1.348 and 1.45. Solid and dashed—dotted curves
are simulated values for inclusion nuclei that start at
the top and gradually fill the host particle. At a
small inclusion radius the particle extinction is de-
termined by the refractive index of the host sphere.
With p increasing, the extinction is enhanced, and,
finally, when the inclusion fills the whole sphere,
extinction is practically that of the inclusion itself.
The backscattering coefficient is changed in a similar
manner, though it is more oscillatory.

For large particles the picture becomes more com-
plicated as shown in Fig. 3. This figure shows the
dependence of the same parameters for x = 200 (the
size parameter x of the host sphere is chosen not to
coincide with one of the morphology-dependent reso-
nances). Both  and a are normalized to the corre-
sponding values of the host particle without an
inclusion. Such normalization allows one to com-
pare the effect of an inclusion on scattering properties
of host particles with different size parameters.
Curves are shown for the inclusion fixed to the top
(solid curve) or bottom (dotted curve) of the host
sphere, and the dashed—dotted curve represents the
results obtained for a concentric spheres model.
Calculations are performed with a step of Ap = 0.01.
A notable result is the fact that a(p) is not dependent
on where the inclusion is fixed (top or bottom) in the
host particle; the curves coincide perfectly. We have
also shown that this is true in the derivation we
present in Appendix A. For big spheres without ab-
sorption, the extinction deviates slightly from 1 and is
not too sensitive to changes in p. The dependence of
B on p, however, is complicated because of numerous
resonance effects.

To further investigate the dependence of § on p and
to determine the scattering features slowly changing
with particle size, we performed a simulation for
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Fig. 3. Relative (a) backscattering and (b) extinction coefficients
as a function of relative inclusion radius. Calculations are per-
formed for a host sphere with x = 200, m,, = 1.348, and m, = 1.45.
The inclusion is fixed to the top (solid curve) or bottom (dotted
curve) of the host sphere. The dashed—dotted curve presents the
results obtained for concentric spheres. The calculation step is
Ap = 0.01.

polydisperse spheres. We assumed a log-normal
distribution for @, but kept the ratio p the same for all
particles. The size distribution was used in the form

(ln a; — ln al,mean)2
2In’c ’

nyla;) = exp| —

\f%al Ino

where In a4 ., is the mean radius of the host sphere
and In? o is the dispersion. We should point out here
that the choice of the size distribution was not aimed
to match any real atmospheric situation but rather to
investigate if we can remove the effects related to
morphology-dependent resonances. The number of
points inside this distribution was usually taken as
N = 30, to keep computation time manageable.
Figure 4 shows the results obtained for a distribu-
tion with x,.., = 300 and In ¢ = 0.1 (x varies be-
tween 200 and 400). Refractive indices of the host
particle and its inclusion are m;, = 1.348 and m, =
1.45. The calculation step used is Ap = 0.02, and the
results are smoothed over a 0.06 interval. Results
for the same configurations as in Fig. 3 are shown:
The inclusion is fixed to the top or bottom of the host

600 1 1 ! L 1 1

500

400

300 4

2004

Relative backscattering

100

T
0.0 0.2 0.4 0.6 0.8 1.0

102 1 1 ) 1 L 1

(b)

1.00 H

Relative extinction

0.98 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Relative inclusion radius p

Fig. 4. Dependence of relative (a) backscattering and (b) extinc-
tion coefficients on the inclusion relative radius. The inclusion is
fixed to the top (solid curve) or to the bottom (dotted curve) of the
host particle, and the dashed—dotted curve shows the result for
concentric spheres. Calculations are performed for log-normal
distribution of host spheres’ radii with x,,,,, = 300 and In ¢ = 0.1.
Refractive indices of the host particle and inclusion are m;, = 1.348
and m; = 1.45, respectively. The calculation step is Ap = 0.02,
and the obtained results are smoothed with a 0.06 averaging in-
terval.

sphere and for concentric spheres. When the inclu-
sion was located near the top of the host sphere cen-
ter, an increase in backscattering of almost 3 orders
of magnitude is observed for p ~ 0.5. For the inclu-
sion located near the sphere bottom, p ~ 0.5 resulted
only in 1 order of magnitude in backscatter enhance-
ment, and the enhancement for concentric spheres is
not significant. Another interesting result is the
fact that the change in extinction of the combined
particle did not exceed 1% for all p values.

B. Dependence of Scattering Properties on Refractive
Index

To study the effect of the refractive index, we per-
formed calculations for the same geometrical consid-
erations but for inclusions with refractive index m; =
1.25 (Fig. 5). Dramatically different results are ob-
tained in that the maximum enhancement in back-
scattering occurs when the inclusion is located near
the bottom of the host sphere and p ~ 0.85. For the
case of an inclusion set at the top of the host particle,
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Fig. 5. Dependence of relative backscattering on the inclusion
relative radius. The inclusion is fixed to the top (solid curve) or to
the bottom (dotted curve) of the host particle, and the dashed—
dotted curve shows the result for concentric spheres. Calcula-
tions are performed for log-normal distribution of host spheres’
radii with x,,.,, = 300 and In ¢ = 0.1. Refractive indices of the
host particle and inclusion are m; = 1.348 and m; = 1.25, respec-
tively. The calculation step is Ap = 0.02, and the obtained results
are smoothed with a 0.06 averaging interval.

measurable backscatter enhancement is observed for
p < 0.5 and with no or even a decrease in backscatter
for larger inclusions. The normalized extinction is
close to 1, hence the relative lidar ratio R ~ 1/B; i.e.,
the relative lidar ratio differs strongly for an inclu-
sion located near the top or bottom of the host sphere.
This suggests that the lidar ratio for such particles (to
the extent they are applicable) will be different for
measurements performed from the ground and from
an aircraft.

Figures 4 and 5 dealt with only two values of m;,
whereas in Fig. 6 we show a simulation for varying
m; for top (m; > m,) and bottom (m; < m,) inclusion
locations, where maximum backscattering en-
hancement is observed. The results may be sum-
marized as follows. For m; > m,, the maximum
backscattering enhancement is observed at p ~ 0.5
for all m; tested. It is interesting to note that the
maximal backscattering enhancement (relative g ~
450) corresponds to m; = 1.4 and slightly decreases
with increase in m;. But, for the case of m; < m,,
backscattering is enhanced at p ~ 0.8 for all m,; in
the range 1.15-1.3 and increases with decreasing
m;, reaching a maximum value of 8 ~ 1200 at m; =
1.15.

The dependence of maximal backscattering on the
inclusion refractive index is nicely summarized in
Fig. 7. Note that the highest backscattering en-
hancement is obtained for m; = 1, which corresponds
to an air bubble inside the water sphere. For m; >
1.4, the maximum value of backscattering enhance-
ment does not change significantly.

A comparison of these results with those from
concentric sphere geometry for scenarios similar to
those in Fig. 6 yields interesting conclusions (Fig.
8). For m; > m,, the maximums in backscattering
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Fig. 6. Dependence of relative backscattering on the inclusion
relative radius for (a) m; > m,, and (b) m; < m,. The inclusion is
fixed to the (a) top or (b) bottom of the host particle. Host spheres’
radii are log-normal distributed with x, .., = 200 and In ¢ = 0.1.
The calculation step is Ap = 0.02, and the obtained results are
smoothed with a 0.06 averaging interval.

are centered at p =~ 0.5 and, for m; < m,, the center
is shifted to p =~ 0.8. These results are in agree-
ment with those discussed in Ref. 3 for melting ice
spheres. In contrast to the nonconcentric model,
the relative B enhancement for concentric spheres
is lower, though the peaks are wider. The differ-
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Fig. 7. Dependence of maximal relative backscattering on the
inclusion refractive index. Host spheres’ radii are log-normal dis-
tributed with x,.,,, = 200 and In o = 0.1.
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Fig. 8. Relative backscattering as a function of the relative inclu-
sion radius calculated for concentric spheres with m; = 1.15
(dashed—dotted curve), 1.25 (solid curve), 1.45 (dotted curve), and
1.55 (dashed—dotted—dotted curve). The calculation step is Ap =
0.02, and the obtained results are smoothed with a 0.06 averaging
interval.

ence is especially significant for m;, < m,. For con-
centric spheres at m; = 1.15, the maximum
enhancement is § ~ 5, which is more than 2 orders
lower than enhancement in the nonconcentric
model.
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Fig. 9. Dependence of relative (a) backscattering and (b) extinc-
tion on the relative inclusion shift. Calculations are performed
for monodisperse spheres with x = 200, p = 0.1, m;, = 1.348, and
m; = 1.45. The calculation step is A3 = 0.01.

C. Dependence of Scattering Properties on Vertical
Displacement of the Inclusion

In this subsection we present the results of numerical
simulations performed to understand how a vertical
shift in the position of the inclusion of constant size
influences the particle scattering properties. The
dependence of backscattering and extinction coeffi-
cients on the relative inclusion shift for p = 0.1 and
m; = 1.45 is presented in Fig. 9. The calculations in
the figure are performed for a single sphere with x =
200 and a calculation step of A5 = 0.01. The depen-
dence o on the relative shift is symmetric relative to
the center of the host sphere. This is in agreement
with previous statements and the results shown in
Appendix A.

The behavior of backscattering is, however, com-
plicated by morphology-dependent resonance effects.
Here again we consider a distribution of sizes to see
how it affects these resonances (Fig. 10). The calcu-
lations are made for inclusions with relative radii of
p = 0.1, 0.5, and 0.8 and a log-normal distribution of
host spheres with mean radii of x,,.,, = 300 and In
o = 0.1. Refractive indices of the host particle and
inclusion are m;, = 1.348 and m; = 1.45, respectively,
and a calculation step of A5 = 0.02 is used. The
results plotted in Fig. 10 are smoothed over a 0.06
averaging interval. Similar to our earlier results
(see discussion of Fig. 4), backscattering is most sen-
sitive to the translation when the inclusion relative
radius is of p = 0.5 and reaches a maximum when the
inclusion is located near the top of the sphere. When
the inclusion is located near the bottom of the host
sphere, the relative backscattering increases but not
as much as when it is located at the top.

Figure 11 shows the dependence of backscatter on
the relative shift (8) calculated at a slightly smaller
refractive index, m; = 1.25, for the same values of
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Fig. 10. Dependence of particle relative backscattering on the
inclusion shift for inclusion relative radii of 0.1 (solid curve), 0.5
(dotted curve), and 0.8 (dashed—dotted curve). Computations are
performed for log-normal distribution of host spheres’ radii with
Xmean = 200 and In ¢ = 0.1.  Refractive indices of the host particle
and inclusion are m; = 1.348 and m; = 1.45. The calculation step
is A3 = 0.02, and the obtained results are smoothed over a 0.06
averaging interval.
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Fig. 11. Dependence of particle backscattering on the inclusion
shift for inclusion relative radii of 0.1 (solid curve), 0.5 (dotted
curve), and 0.8 (dashed—dotted curve). Computations are per-
formed for log-normal distribution of host spheres’ radii with
Xean = 200 and In o = 0.1.  Refractive indices of the host particle
and inclusion are m; = 1.348 and m; = 1.25, respectively. The
calculation step is A3 = 0.02, and the obtained results are
smoothed with a 0.06 averaging interval.

inclusion relative radii as in Fig. 10. In contrast to
Fig. 10, the behavior of the curves changes; the max-
imum relative backscattering is observed for an in-
clusion with p ~ 0.8 located near the bottom of the
particle.

4. Application to a Case of a Water Droplet Containing
an Ice Nuclear

As mentioned above, a case of special interest is a
water sphere containing an ice inclusion. Two phys-
ical arrangements we have considered above are (i)
the relative size of the ice and water mass and (ii) the
location of the ice inclusion within the water drop.
Here we first deal with the dependence of relative
backscattering on the relative radius of the inclusion
for an ice-water-mixed drop (Fig. 12). The figure
shows the backscatter when the ice core is fixed to the
top (solid curve) or to the bottom (dashed curve) of the
host water sphere and the relative backscatter ob-
tained for concentric spheres (dashed—dotted curve).
Calculations are performed for a log-normal distribu-
tion of the host spheres’ radii with x,,,,,, = 400, In o =
0.1, and m; = 1.324. Note that the refractive index
of ice is lower than that of water, and, just as with the
results of the previous section, the maximum back-
scattering is observed for an inclusion of p ~ 0.85
located near the bottom of a water sphere. Approx-
imately a 50-fold enhancement in backscattering ob-
served is limited to a narrow region of relative radius.
For the inclusion located near the top of the host, the
backscattering is characterized by an oscillating
trend with smaller enhancements.

As we have already mentioned, the lidar ratio
equals R ~ 1/B. For big ice inclusions (p ~ 0.8), this
ratio is strongly decreased for the inclusion located
near the bottom and increased for inclusions near the
top of the water sphere. The translation of the in-
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Fig. 12. Dependence of relative backscattering on the inclusion
relative radius for an ice-water-combined particle. An ice sphere
is fixed to the top (solid curve) or to the bottom (dotted curve) of the
host water sphere, and a dashed—dotted curve shows the result
obtained for concentric spheres. Calculations are performed for
log-normal distribution of host spheres’ radii with x,,,.,,, = 400 and
In o = 0.1. The calculation step is Ap = 0.02, and the results for
lidar ratio are smoothed with a 0.06 averaging interval.

clusion from the bottom to the top changes strongly
the particle scattering properties, so the measure-
ments of the lidar ratio of such a combined particle
can, in principle, provide information about its struc-
ture.

In Fig. 13 we show the dependence of the relative
backscatter enhancement as a result of the relative
displacement of the ice inclusion from the center of
the host particle for three distinct relative radius
values (p = 0.1, p = 0.5, and p = 0.85). A general
statement that can be made is that the smaller the
inclusion, the smaller the enhancement, and it occurs
at large displacements from the center. On the
other hand, a large ice inclusion has little room for
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Fig. 13. Dependence of particle relative backscattering on the ice
sphere relative shift for p = 0.1 (solid curve), 0.5 (dotted curve), and
0.85 (dashed—dotted curve). Computations are performed for log-
normal distribution of host spheres’ radii with x,,.,, = 400 and In
o = 0.1. Refractive indices of the host particle and inclusion are
m;, = 1.348 and m; = 1.324. The calculation step is A = 0.02.
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Fig. 14. Vertical profiles of temperature and scattering ratio il-
lustrating lidar bright- and dark-band phenomena.

displacement from the center but has the largest
backscatter enhancement.

In nature, an ice-water mixture occurs during the
melting of a hail particle or snowflake as it falls and
passes through increasingly warmer temperature
layers. This is commonly recognized in radars as a
narrow bright-band region.'’® One factor for the
bright-band observations in radars is the fact that
enough water has melted to coat the ice in sufficient
depth, as the low-density snowflakes melt and collapse
to form drops and scatter as equivalent-sized water
drops. Figure 14 shows the vertical profile of the scat-
tering ratio (the ratio of the full backscattering to the
molecular one) obtained from Raman lidar sounding of
a snow cloud. The temperature profile was simulta-
neously measured with the sonde. The data were col-
lected by the NASA scanning Raman lidar during the
Third Convection and Moisture Experiment in 1998 at
Andros Island, the Bahamas, during the passage of
hurricane Bonnie.’® The experiment site was under a
stratiform rain event that lasted several hours when
the data were recorded. The strong scattering by
large snow aggregates immediately above the melting
layer (z > 5 km) results in a relative signal enhance-
ment, and it goes down for z > 5.5 km because of strong
attenuation by snowflakes.

However, the interesting phenomenon occurs just
below this signal maximum, where the snow starts to
melt and gets coated with water. A backscatter in-
tensity minimum occurs in this melting layer region,
where the hydrometeors are ice—water mixtures. It
is on this region, in which snowflakes have suffi-
ciently melted to form water-coated particles, that we
focus. As the snowflakes melt, they collapse in size,
resulting in a decrease in the backscattered lidar
signal, reaching a minimum, before starting to in-
crease. This increase may occur in the region in
which wet snowflakes have collapsed into mixed-
phase raindrops.

At the initial stage of the melting the nuclear may be
located near the bottom because of air flow. The com-
putations performed above show that backscattering

at such a geometry may be enhanced. When the nu-
clear becomes rather small, it may float to the top, and
backscattering is decreased. So the decreasing of nu-
clear size and its shift from the bottom to the top may
result in the feature similar to the bright band shown
in Fig. 14 at altitude interval 3.5-4.5 km. It may be
true that the ice—water mixture in a falling drop may
not have the simple geometrical symmetry we have
assumed but rather follows a complex mixture. Nev-
ertheless, understanding the scattering patterns even
in these simple geometrical formulations is important
and can lead to further insights about the interaction
of laser light with water—ice mixtures.

5. Conclusion

The extensive computer simulations were performed
to understand the combined particles’ backscattering
properties as a function of inclusion location for dif-
ferent values of refraction index in the frame of the
eccentric spheres model. The obtained results may
be summarized as the following: Spherical inclu-
sions with m; < m,, strongly increase backscattering
when located near the host particle bottom; the rel-
ative inclusion radius corresponding to the maximal
Bis p ~ 0.8. For m; > m, the backscattering en-
hancement is observed for the top inclusion location
at p ~ 0.5. This B enhancement is specifically re-
lated to the eccentric inclusion location, whereas in
the concentric geometry the backscattering increase
is much smaller. The particle extinction does not
depend significantly on inclusion position, so the rise
of backscattering should be accompanied by a de-
crease of the lidar ratio. It is interesting that the
lidar ratios should be different when measuring is
done from aircraft and from the ground.

Though the study of microphysical processes in
clouds with lasers implies calculations performed
with size parameters in excess of 1000, to keep com-
putation time manageable, we used in most cases
Xmean = 300. But in some specific cases we per-
formed the computations also with x,,.,, = 500 to
make sure that the main observed features are pre-
served and do not depend significantly on particle
size. Thus we are convinced that simulations are
representative of real atmosphere phenomena and
can be used to get an insight into the microphysical
processes involving aerosol and clouds.

The developed computer code was applied to the
simulation of scattering properties of melting ice
spheres; we thus tried to get some understanding of
lidar bright- and dark-band phenomena. The results
demonstrate that the shift of the ice nuclear along the
Z axis leads to the strong variations in the light back-
scattering coefficient and, in principle, may be respon-
sible for the experimentally observed scattering
enhancement. The analyzed model is rather ideal-
ized to describe the real situation. We do not consider
the deformation of the water droplet and possible
movement of the inclusion around inside the drop due
to drag-induced internal circulations. The ice nuclear
is suggested to be spherical, though in reality it is of
complicated shape. Nevertheless, we can see a kind
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of resemblance between the results of experimental
measurements and our simulations. It may demon-
strate the importance of eccentric nuclear position in
the mechanism of lidar bright- and dark-band forma-
tion.

Appendix A
The extinction cross section is!!

1 © n
Coxt = —zszgRe[E >

n=1 m=-n

nn + 1) «

where

2n +1 (n — m)! 1z

47 (n + m)!

K

nm

Partial expression at fixed m is equal to

nn+ 1)
O-ext,m = 2k2E2 Re|:n21 K2 anmctm + atmcnm

This can be written in matrix form:
Coxtn = ~ 5 k2E2 Re(B'NC* + B™*NC), (A3)

where N is a diagonal matrix of size 2Nmax X 2Nmax
with elements [n(n + 1)]/K%,, n = 1,...N,..
1a~- Nmax7 B = @imo -5 AN max,mo Imo> =+ >
bN max,m) 1S @ transpose of a column vector B; C =
{Cim> -+ s CN maxsms @1ms - - - » AN max,m) 1S @ TOW Vec-
tor; and the wave number is £ = 2m/\.

In a similar way, a set of simultaneous equations!!
in matrix form is

nm?>

UB + £C = AT,

VB +£C=A'T, (A4)
Where B = al,m’ LK) aNmax,m7 bl,m’ s ey bNmax,my C
- clm}'--; cNmaxm: 1,ms * > N max,m> =
Eims + > EN maxms Uims - + + 5 UN max,m ar€ column vec-

tors, U, \11 § & are dlagonal matrices of size 2Nmax
X 2Nmax consisting of Riccati—Bessel functions sim-
ilar to matrix N, and A and A’ are square matrices
containing constant coefficients at unknowns ¢, ,,,
Uy e
Eliminating T, we have equation C = MB, where
M=A%-A%) 1A W - A1), withA and
A'"! as inverted matrices. Matrix M does not de-
pend on angle 6 at which the incident wave impinges
on the system j, but, for opposite angles 6, and 6, =
180° — 64, the corresponding column vectors B, and
B, are related as

B, =DB,, (A5)
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where the diagonal matrix D contains (—1)™" ! in the
upper half and (—1)™ in the lower half of its diagonal.
Taking into account Eqgs. (A3) and (A5), we conclude
that for opposite angles 0oy, 1 = therefore

(A6)

ext m, 25

0-ext,l = O-ext,2~

References

1. M. Kerker, The Scattering of Light and Other Electromagnetic
Radiation (Academic, New York, 1969), Chaps. 3 and 4.

2. K. Sassen, “Contrail-cirrus and their potential for regional cli-
mate change,” Bull. Am. Meteorol. Soc. 78, 1885-1903 (1997).

3. P. Di Girolamo, B. B. Demoz, and D. N. Whiteman, “Model
simulations of melting hydrometeors: a new lidar bright
band from melting frozen drops,” Geophys. Res. Lett. 30, 1626,
doi: 10.1029/2002GL016825 (2003).

4. K. Sassen and T. Chen, “The lidar dark band: an oddity of the
radar bright band,” Geophys. Res. Lett. 22, 3505-3508 (1995).

5. Q. L. Aden and M. Kerker, “Scattering of electromagnetic
waves from two concentric spheres,” J. Appl. Phys. 22, 1242—
1246 (1951).

6. T. Yokoyama and H. Tanaka, “Microphysical processes of melt-
ing snow-flakes detected by two-wavelength radar. Part I.
Principle of measurement based on model calculation,” J. Me-
teorol. Soc. Jpn. 62, 650—666 (1984).

7. K. Aydin and Y. Zhao, “A computational study of polarimetric
radar observables in hail,” IEEE Trans. Geosci. Remote Sens.
28, 412—-422 (1990).

8. S. K. Mitra, O. Vohl, M. Ahr, and H. R. Pruppacher, “A wind
tunnel and theoretical study of the melting behavior of atmo-
spheric ice particles. IV: Experiment and theory for snow
flakes,” J. Atmos. Sci. 47, 584-591 (1990).

9. R. Meneghini and L. Liao, “Effective dielectric constants of
mixed-phase hydrometeors,” J. Atmos. Ocean. Technol. 17,
628-640 (2000).

10. J. G. Fikioris and N. K. Uzunoglu, “Scattering from an eccen-
trically stratified dielectric sphere,” J. Opt. Soc. Am. 69, 1359—
1366 (1979).

11. D. W. Mackowski, “Analysis of radiative scattering for multi-
ple sphere configurations,” Proc. R. Soc. London Ser. A 433,
599-614 (1991).

12. F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical
properties of spheres containing a spherical eccentric inclu-
sion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).

13. N. C. Skaropoulos, M. P. Ioannidou, and D. P. Chrissoulidis,
“Indirect mode-matching solution to scattering from a dielec-
tric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11,
1859-1866 (1994).

14. K. A. Fuller, “Scattering and absorption cross sections of com-
pounded spheres. III. Spheres containing arbitrarily lo-
cated spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893—
904 (1995).

15. D. Ngo, G. Videen, and P. Chylek, “A FORTRAN code for the
scattering of EM waves by a sphere with a nonconcentric spher-
ical inclusion,” Comput. Phys. Commun. 1077, 94-112 (1996).

16. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975).

17. W. M. Irvine and J. B. Pollack, “Infrared optical properties of
water and ice spheres,” Icarus 8, 324-360 (1968).

18. L. J. Battan, Radar Observations of the Atmosphere (Univ.
Chicago Press, Chicago, I1l., 1973).

19. D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, E. W.
Eloranta, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman,
G. K. Schwemmer, M. Cadirola, S. H. Melfi, and F. J. Schmid-
lin, “Raman lidar measurements of water vapor and cirrus
clouds during the passage of hurricane Bonnie,” J. Geophys.
Res. 106, 5211-5225 (2001).



