Angle- and size-dependent characteristics of
incoherent Raman and fluorescent scattering by

microspheres. 1.

General expressions

Vadim Griaznov, Igor Veselovskii, Alexei Kolgotin, and David N. Whiteman

A dipole model is used to simulate incoherent Raman and fluorescent scattering by microspheres.

The

use of the addition theorem for spherical harmonics circumvents the need to evaluate double sums in the
final formulas, thereby drastically reducing computational effort. Special attention is paid to consider-

ation of backscattering geometry, which is important for lidar applications.

The formulas derived for

backscattering geometry decrease the computation time for size parameter x ~ 100 by a factor of 200

compared with the time for calculations performed at other angles.
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1. Introduction

The inelastic scattering of laser radiation from mi-
crospheres is a powerful technique for gaining infor-
mation about particle size and chemical
composition.12 Nevertheless, quantitative evalua-
tion of inelastic scattering spectra entails serious
complications because the radiation field within the
microparticle depends in a complicated way on par-
ticle size, refractive index, and wavelength. To re-
late the measured inelastic spectrum to the physical
parameters of the particle, one should use the appro-
priate physical model. Such a model, based on em-
bedded dipoles, was suggested and investigated by
Chew et al.;3* Kerker et al.,56 Chew,” Kerker and
Druger,® and Druger and McNulty.® In a dipole
model the electric field transmitted in the particle
induces classic electric dipoles in molecules. These
dipoles emit frequency-shifted inelastically scattered
radiation. Owing to the incoherence of the scatter-
ing process, the total power emitted to the far field by
the whole set of reradiating molecules is obtained by
integration of all dipole powers. But the numerical
integration of the expressions derived by Kerker et
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al.b is extremely time consuming, so these earlier
results (obtained 23 years ago, when computer tech-
nology was much less advanced) were limited to rel-
atively small size parameters of x ~ 20.

To decrease computation time, simplifications of
the dipole model were suggested. For a rotationally
symmetric distribution of molecules the volume inte-
gration can be split into solid-angle integration and
integration over the radial position. It has been
shown that solid-angle integration can be solved an-
alytically.” Thus the formula for the inelastically
scattered power is reduced to an integral of one di-
mension, which drastically reduces the computa-
tional effort compared with that required for
numerical integration over a three-dimensional dis-
tribution of molecules.1® Still, the consideration of
integrated inelastic scattering does not permit the
study of the scattering phase function and the polar-
ization characteristics of the scattered radiation.

One may achieve some simplifications and reduc-
tion of computation time by considering rapidly ro-
tating molecules,®!! thus escaping the need to
address vector relations between the excitation field
and molecular emission. Such averaging over dipole
orientations should lead to correct results for fluores-
cence in many cases, but in Raman scattering the
dipoles are field oriented rather than randomly dis-
tributed, so at least a comparison between the results
obtained with these approaches should be made.

In this paper we derive the formulas for calculation
of incoherent Raman scattering by microspheres, us-
ing the classic dipole model. The application of the
addition theorem circumvents the need for double
summing in the final formulas for inelastic scattering,
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thus reducing the computation time. With these for-
mulas it is possible to calculate the scattering phase
functions and intensity of morphology-dependent res-
onances for different polarizations of incident radia-
tion and for a wide range of size parameters.

2. Model

The calculations were carried out with the assump-
tions that the induced dipoles are parallel to the ex-
citing field and that an active molecule does not
rotate during the interval between excitation and
emission. This approach applies most clearly to flu-
orescence when orientations of dipoles are fixed and
to Raman scattering when molecules are isotropically
polarizable. The active molecules are assumed to be
uniformly distributed through the microsphere. Al-
though this model corresponds to a rather idealized
system, it allows us to illustrate the major effects that
depend on the morphology and optical properties of
particles.

A. General Expressions

A plane wave of frequency w, propagating along the z
axis in a medium with refractive index n, may be
expanded in terms of vector spherical harmonics12-14:
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For horizontal E; X and vertical E; °Y polarization

of the incident radiation with respect to the scatter-
ing plane, taken as the x—z plane, we have
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Here ko, = nymy/c is the wave number of the outer
medium and j; (kyor) denote spherical Bessel func-
tions. All the expressions here and below are writ-
ten in the Gaussian system of units; the time-
dependent factor is exp(—iwt).

The field transmitted inside the sphere of radius a
and optical properties n, and ., located at the origin
of the coordinate system is expanded as!3.14

ve(l', m")V

E,.(r) = E[ e

2
I'm' 1 Wo

X [Jr(kor )Xy, (07, ¢')]
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with coefficients
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where U;(p) = pji(p), &(p) = ph, M (p), U/ (p), &' (p) are
Riccati—-Bessel functions and their derivatives,

hl(l)(p) denotes Hankel functions of the first kind;
ko1 = (wo/c)n, is the wave number inside a particle,
M = ny/ny = koy1/kys is the relative refractive index,
and x = kg,a. We use mainly Riccati—Bessel func-
tions instead of spherical Bessel functions because
the former are preferable in programming and nu-
merical calculations.

Assuming that the polarizibility of medium «, is
isotropic, the electric dipole moment induced by a
transmitted field is defined by o;E,,,(r). The radia-
tion emission at frequency o by the assembly of di-
poles is the reason for the presence of inelastically
scattered field E,(w) that arises in the outer medium.
Assuming that the relative change in frequency p =
wo/w is not too large, we can assume that n,(w) =
ni(wg). In the far zone an electric field of radiation
scattered inelastically from a spherical particle owing
to a single dipole is given by3.5.6.10
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A superscript in our notation means that the field is
produced by a single dipole; the superscript is omitted
after the implementation of volume integration.
The coefficients cz'(l, m) and c,, (I, m) were derived



in Ref. 3 and are expressed here in terms of Riccati—
Bessel functions:

cg'l, m) = du(l)ag'l, m),

dy(l) = Iy
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The expansion coefficients?.10
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determine a dipole field Edipl, which is created by an
excited molecule located at coordinates (r', 6', ¢’)
inside the scattering particle; 2 = w/c. Using the
definition of vector spherical harmonics,'2 one can
express them in spherical coordinates as
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where Y, (0, ¢) are scalar spherical harmonics and e,
and e, denote unit vectors of a spherical system.
Therefore the components of E, () can be written as
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Taking into account expressions for c,,'(/, m) and
cz'(l, m), we find the components
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The final goal of our analysis is calculation of the
angular scattering cross section of a particle. In the
case of a single excited molecule the cross section can
be expressed as

d;.-l — |E21|2 7‘2 — |E291|2 + |E2<p1|2 1”2
dQo  E; E?

(10)

Incoherent scattering from the whole volume of a
particle in cases of parallel and perpendicular polar-
ization of the incident wave is determined corre-
spondingly by the integral values
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where v is the total volume of a particle and N means
the density of dipoles radiating at Raman frequency
. For the reader’s further convenience we set up a
correspondence between the differential cross sec-
tions used here and the scattered intensities Hy;, Vi,
Hy, and Vy, introduced by Kerker and Druger® be-
cause this notation is commonly used in simulations
and in experimental data analysis:

doy 2% _H dG%OX Vi
a a0 I,

doy Y B doz@oy _Vy
a0 1.’ ao I’

where I;,. is the intensity of the incident radiation.
Unfortunately, the number of multipole coeffi-
cients taken into consideration is proportional to
(IM) oy = Lo Where l1hax 18 the maximum value of
Ll = x + 4613 + 2. 11" The number of multipole

terms can be reduced essentially if we employ the
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addition theorem?!2 and escape from double sums in
the expression for E,'(r). The details of this transi-
tion are presented in Appendix A. Further, the ex-
pressions for E,," and Ez(p1 can be simplified
additionally if we apply a similar representation of
vector spherical harmonics expressed in spherical co-
ordinates for transmitted field E,,.,(r'). For OX and
OY polarization of the incident wave the transmitted
field may be written as
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and P, '(8’) is the associated Legendre function.
Taking into account the results of Appendix A, we
have finally
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Depolarization of the scattered radiation for both

cases of incident wave polarization can be determined
as ratios:

0X,
oy _ HV(e’ .')C)
3 (67 x) - Vv(e, x) ) (22)

To compare the scattering properties of aerosol and
bulk media we define the normalized scattering cross

section as
do
dQ aerosol
(6,
dQ bulk

where in the denominator we imply an inelastic in-
coherent cross section in the backward direction:

(23)

d 4
( O-) = = 7Ta3N0112k4M1lL2M. (24)
bulk
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This formula for the differential cross section of a
bulk medium may be derived in a manner similar to
that described in Refs. 6 and 10. It should be men-
tioned that, after integration over all directions, we
arrive to the same expression as Chew? does.

B. Inelastic Scattering by Small Particles

With small radii the expressions for the scattered
field can be obtained analytically. For Riccati—
Bessel functions of the argument p — 0 we can find
thatts
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Taking into account that p,*(8’) = —1 and 7,%(0") =
—cos 0', we obtain for the internal field E,(r’)
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After some manipulations the components of scat-
tered field are
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So the depolarization vanishes in the case of small
particles. The cross sections are
do X _ 216w Na,*p*x* >
dQ  nlA(M?+ 2)"\,
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A0 nSM2+ 2)0,

0s? 0,
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where )\ is the wavelength of incident radiation. It
is obvious from the formulas [Eq. (25)] that the scat-
tering is proportional to volume of particles.

C. Inelastic Scattering in the Backward Direction

The case of special interest is the application of the
dipole model to lidar sounding. In the lidar tech-
nique, only backscattered radiation is considered,
and for 6 = 180° the expressions for the scattered field
can be significantly simplified. From the properties
of associated Legendre functions we find that?5

dpP;" (6
oprwy| =TT m| # 1,
sin 0 180° do | 0
(26)
dP;"(6 1
B I L
sin 0 180° do | 0 2
(27)
m (l+1)
PO =(-1)
e PNO| = (DT
PO _ D S
do | e 2 '
(28)

Therefore for backward scattering we do not need to
use the addition theorem to get single sums because
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all the terms with |m| # 1 are equal to zero. As is
shown in Appendix B, the angle-scattering cross sec-
tion may be analytically integrated over angle ¢ to
yield the expressions
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The integration over the rest of the coordinates can
be achieved in numerical form. Here we present the
expressions for only one polarization of an incident
wave because for backscattering the results obtained
for both polarizations coincide. The application of
expressions (29) and (30) for backscattering geometry
decreases the computation time by a factor of 200
compared with that for calculations performed with
formulas (17)—(20).

3. Summary

The application of classic dipole model3-7 formulas to
incoherent Raman scattering by microspheres is
highly time consuming. Using the addition theorem
for spherical harmonics may accelerate the computa-
tions, which will circumvent the need to evaluate
double sums in final formulas, thereby drastically
reducing the computational effort. For backscatter-
ing geometry the integration over one of the angles
may be performed analytically. For x ~ 100 the de-
rived formulas lead to the decrease of computation
time by a factor of 200 compared with that required
for other angles. The formulas derived make possi-
ble the simulation of scattering by particles of much
larger sizes than was previously possible. We dem-
onstrate these computational improvements in a fur-
ther paper.16

Appendix A: Application of an Addition Theorem to
Expressions for an Inelastically Scattered Field

In pursuing the task of escaping double sums in ex-
pressions for E,'(r), first we write complex conjugate
vectors X, %0, ¢') and {V X [j,(pK r")X,,(6', o) ]}*
through their components in a spherical system:
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With these expressions the field components become
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Further, we use the addition theorem12
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Now the field components [Eqgs. (B1) and (B2) below]
can be rewritten without double sums:

1_ g3 exp(szr) a1 20+ 1
E,, k°Mnypioy ———— E (=) I+ 1)
X [idM(l)J'z(pKlr’)SwEl(r’) €
) . dg(l)
— idy()jpKir)SuBax') - e, == =10
ny
( )
TETRALLSURIY RO
r'
dg(l) 1 d[r'j(pKir')] ,
kny 1’ dr’ Sala(r’) - e
dg(1) 1 d[r'j(pK,r’
_ &( )7 ['j(pKir')] SE,(r') - e,
kn, r’ dr’
1_ 13 exp(zkzr) N 20+1
E2q> = —k°Mnopo; — —— E( i) I+ 1)
X [idM(l)jz(pKlr’)S¢eE1(r’) e
) . dz(1)
— idy(1)jpK,r")SuENx') - e+ =1
ny
K
)Jz(p 1’")S El( -
I"
dg(1) 1 d[r'j(pKir')] )
+ hny 1 O S Ei(r') - e
dz(l) 1 d[r'j,(pK,r’
n &( )7 [r'ji(pKir')] SoEi(r') - ey .
kny, r’ dr’

Taking further programming into consideration, we
can express the S functions as

d2P dp,
S, = 5 sin 6’ sin 6 sin® ¢’ + — ¢os ¢y,
dx dx
d’P, : .
Spe =75 sin 6’ sin ¢'(—sin 6’ cos
dx
! . ’ dPl ! s !
+ cos 6 smecos<p)+dfcos9 sin o/,
x
a’P, . .
Seo = e sin 0 sin ¢'(cos 6’ sin 0
x

. . dpP, .,
— sin 6 cosecoscp)—dfcosesmcp,
x

d’P, . .
Se = Py (sin 6’ cos 6 — cos 0’ sin 0 cos @)
x

X (cos 0" sin 6 — sin 6’ cos 0 cos @)

d—Pl . ;. ' !
+a—(s1n9 sin 6 + cos 0’ cos 0 cos ¢'),
x
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Sy = d7( cos 0’ sin 0 + sin 6’ cos 0 cos ¢’'),
x
S P, o sin o’
= ——sin §’ sin ¢/,
¢ dx ¢

where x = cos v and the scattering plane is chosen at
an angle ¢ = 0. From the recurrence relation for
Legendre polynomials!®

(21 + l)xPl - (l + 1)P1+1 -

we can find the derivatives

lPl,1: 0

dp, -1
—=1@2l-1)P, ;+2l-1
d [( )Py + ( )x dx
dP
-1 2]/1,
dZPl -1
11221 — 1) Yy @2l - Dx
dx®
d*P
S 2}/1
Taking into account the initial values P, = 1, P, =

é)/ = 0, dP,/dx = 1, d®P,/dx* = 0, and dzPl/
dx“ = 0, we can calculate ‘all the S functions sequen-
tially from [ = 1to ] = L max

Appendix B: Evaluation of Field Components for
Backscattering Geometry

After substitution of expressions (26)—(28) into com-
ponents of scattered field E,'(r') we have

i(21 + 1)Y2
e

_ exp(zkzr) E (-
V4w

)l+1(_ l)l

20 —

X {i[cM(l, 1) + cy(l, —1)]

—cgl, —1)
Ny ’
exp(ikyr) i (-

2¢ =
kor =1

URY

(21 + 1)V
11 1t
)7 (1) T olie \e“ﬂ

X [CM(Z, 1) —eul, -1)

g, 1) + g, —1)]
—1 .

ny

(B1)

Further simplification can be made if we combine
complex conjugates of vector spherical harmonics
that carry equal subscripts / and express these pairs
in spherical coordinates:

S D[ dP/e") sin o'
S 10 DIN/2 S - U

P(6")
sin 6’

— e
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€ gng SRE |-

10X _
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r
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kdy(l) Ayi(pkor’)

L@+ 1)
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— sin ¢’ cos ¢’ Ez

11(9 )

X de(l)AQ]l(pkOIr’) de/

+ sin ¢’ cos ¢’ E i‘(2l

Jpkor')
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(2L + 1)
+ e
sin ¢’ cos ¢’ ; i I+ 1)
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(21 + 1)i
+ e
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(B3)

+ 1)idg(l)A, P/(0")

X dg(l)A,

X dg(l)A,

In both cases of incident wave orientation the com-

ponents of scattered field will then look as follows:

Substituting Riccati—Bessel functions for the spheri-
cal Bessel functions and using expressions (31), we

E, 10X _ _p 10V _ g exp(ik,r) EM o can write the field components as
20 - 2¢ - 0 1“1
[ E ) (2l + 1) EzelOX — _E2¢10Y
cos® ¢’ i 'k
e+ 13 ) =E, exip(; 27) E*Mp,o[By(r', 8')cos” ¢’
0’
X dul)Awi(phor') o — By(r’, 0)sin® ¢’ — iBy(r’, 0')cos® ¢’
- E L @0+ 1) VA B —iB,(r', 8")cos® ¢’ + iB5(r', 6")sin® ¢'],
sin® ¢’ <10+ 1 u) A (pkor') E2$10X: _E2610Y
dP,' (o’ - exp(ikyr
X — (, = cos” ¢’ > i'(21 = in( 27 R*Mpqoq[—By(r', 0')
de = r
T Didy()A Jipkor') PO = By(r', 0') +iBs(r', 0') +iBy(r’, 0')
£ T k! : + iBs(r', 0')]sin ¢’ cos ¢'.
L Q2L+ 1) . . .
— cos® ¢’ E 0+ 1) dg(l)A, After integration of these expressions over angle ¢’,
=1

1 dr'j(pker')] dP/'(0")

kor' dr’ de’
, (21 + )i
+ sin® ¢’ 2 ! WD ————di()A,

1 d[r'jpkor')] le(e,)
kor' dr’ sin 0’

we obtain the final expressions, Egs. (29) and (30).

References

1. G. Schweiger, “Raman scattering on single aerosol particles
and on flowing aerosols: a review,” J. Aerosol. Sci. 21, 483—
509 (1990).

2. R. Vehring, “Linear Raman spectroscopy on aqueous aerosols:
influence of nonlinear effects on detection limits,” J. Aerosol.
Sci. 29, 65-79 (1998).

3. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and

(B2)

20 September 2002 / Vol. 41, No. 27 / APPLIED OPTICS 5781



5782

fluorescent scattering by molecules embedded in small parti-
cles,” Phys. Rev. A 13, 396—-404 (1976).

. H. Chew, M. Kerker, and P. J. McNulty, “Raman and fluores-
cent scattering by molecules embedded in concentric spheres,”
J. Opt. Soc. Am. 66, 440—444 (1976).

. H. Chew, M. Sculley, M. Kerker, P. J. McNulty, and D. D.
Cooke, “Raman and fluorescent scattering by molecules em-
bedded in small particles: results for coherent optical pro-
cesses,” J. Opt. Soc. Am. 68, 1686-1689 (1978).

. M. Kerker, P. J. McNulty, M. Sculley, H. Chew, and D. D.
Cooke, “Raman and fluorescent scattering by molecules em-
bedded in small particles: results for incoherent optical pro-
cesses,” J. Opt. Soc. Am. 68, 1676-1686 (1979).

. H. Chew, “Total fluorescent scattering cross section,” Phys.
Rev. A 37, 4107-4110 (1988).

. M. Kerker and S. D. Druger, “Raman and fluorescent scatter-
ing by molecules embedded in spheres with radii up to several
multiples of the wavelength,” Appl. Opt. 18, 1172-1179 (1979).
. S. D. Druger and P. J. McNulty, “Radiation patterns of fluo-
rescence from molecules embedded in small particles: gen-
eral case,” Appl. Opt. 22, 75-82 (1983).

APPLIED OPTICS / Vol. 41, No. 27 / 20 September 2002

10

11.

12.

13.

14.

15.

16.

. S. Lange and G. Schweiger, “Structural resonances in the total
Raman- and fluorescence-scattering cross  section:
concentration-profile dependence,” J. Opt. Soc. Am. B 13,
1864-1872 (1996).

J. D. Pendelton and S. C. Hill, “Collection of emission from an
oscillating dipole inside a sphere: analytical integration over
a circular aperture,” Appl. Opt. 36, 8729-8737 (1997).

dJ. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975).

H. C. van der Hulst, Light Scattering by Small Particles (Do-
ver, New York, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (Wiley, New York, 1983).

G. A. Korn and T. M. Korn, Mathematical Handbook for Sci-
entists and Engineers: Definitions, Theorems and Formulas
for Reference and Review (McGraw-Hill, New York, 1961).

1. Veselovskii, V. Griaznov, A. Kolgotin, and D. N. Whiteman,
“Angle- and size-dependent characteristics of incoherent Ra-
man and fluorescent scattering by microspheres. 2. Numer-
ical simulation,” Appl. Opt. 41, 5783-5791 (2002).



